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Abstract

Dependency syntax has long been recognized as a crucial
source of features for relation extraction. Previous work con-
siders 1-best trees produced by a parser during preprocessing.
However, error propagation from the out-of-domain parser
may impact the relation extraction performance. We propose
to leverage full dependency forests for this task, where a
full dependency forest encodes all possible trees. Such rep-
resentations of full dependency forests provide a differen-
tiable connection between a parser and a relation extrac-
tion model, and thus we are also able to study adjusting the
parser parameters based on end-task loss. Experiments on
three datasets show that full dependency forests and parser
adjustment give significant improvements over carefully de-
signed baselines, showing state-of-the-art or competitive per-
formances on biomedical or newswire benchmarks.

1 Introduction

As a central task in automatically extracting information, re-
lation extraction (Chinchor, 1998) aims to determine the re-
lation between a pair of entity mentions. It has been shown
to be useful to general-purpose natural language understand-
ing and other downstream tasks, such as knowledge-base
completion (Surdeanu et al., 2012; Riedel et al., 2013) and
KBQA (Yih et al., 2015; Xu et al., 2016; Yu et al., 2017).
In the biomedical domain, it can help doctors make accurate
decisions by mining supportive or contradictory evidences
from recently published research articles (Quirk and Poon,
2017; Peng et al., 2017). This is important as there are thou-
sands of new medical articles released everyday, making it
impossible to track them manually.

Syntactic features have been shown useful for relation ex-
traction. Early work utilized surface features (Mooney and
Bunescu, 2006) or shallow syntactic information (e.g. base-
NP chunks) (Zhou et al., 2005). Subsequent research (Cu-
lotta and Sorensen, 2004; Bunescu and Mooney, 2005; Jiang
and Zhai, 2007; Zhou et al., 2007; Nguyen, Moschitti, and
Riccardi, 2009) suggested using syntax trees for better cap-
turing long-range dependencies (e.g. via kernel functions).
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Figure 1: (a) 1-best dependency tree and (b) 3-dimensional
full dependency forest for a biomedical sentence. Associated
mentions are in different colors. Phrase “calcium modulated
cyclases” are broken in the 1-best tree, because “modulated”
and “calcium” are erroneously treated as the sentence main
verb and a modifier of the main subject, respectively.

Recent work (Xu et al., 2015; Liu et al., 2015; Miwa and
Bansal, 2016; Zhang, Qi, and Manning, 2018; Fu, Li, and
Ma, 2019) adopting neural models also saw improvements
when incorporating syntactic information into the models,
outperforming these efforts (Zeng et al., 2014) that only use
features from surface strings.

In addition to the news domain, syntax is also crucial for
relation extraction in biomedical domain (Quirk and Poon,
2017; Peng et al., 2017; Song et al., 2018b), and one im-
portant reason is that biomedical sentences usually contain
more domain-specific words (e.g. new medicines, molecules
and gene IDs) than newswire text. These words introduce
more data sparsity, hindering the effectiveness of surface
features. Compared with sequential surface-level structures,
syntax helps to model word-to-word relations by drawing
direct connections between distant yet syntactically related
words, and thus capturing informative structural knowledge
than surface features.

Existing syntax-based relation extraction models, how-
ever, can suffer from two major issues. First, they take the
1-best trees generated during preprocessing, and thus error



propagation is introduced because of parsing mistakes. This
can be much severer for the biomedical domain, where pars-
ing accuracies can be significantly worse than the news do-
main (McClosky and Charniak, 2008; Candito, Anguiano,
and Seddah, 2011). Figure 1(a) shows the 1-best depen-
dency tree of a biomedical sentence in our dataset, where
the dependency tree contains a serious mistake. In particular,
the phrase “calcium modulated cyclases” is broken because
“modulated” is mistakenly considered as the main verb of
the whole sentence, and “calcium” is predicated as the mod-
ifier of the main subject in the sentence. Second, 1-best trees
are discrete structures, which adds an additional layer of dif-
ficulties if we want to finetune the parser parameters during
relation extraction training (Yogatama et al., 2017).

In this paper, we tackle these two issues above by leverag-
ing full dependency forests for relation extraction. As shown
in Figure 1(b), we define a full forest as a 3-dimensional ten-
sor, with each point representing the conditional probabil-
ity p(wj , l|wi) of one word wi modifying another word wj

with a relation l. Compared with a 1-best tree, a full depen-
dency forest efficiently represents all possible dependency
trees within a compact and dense structure, containing all
possible trees (including the gold tree).

We directly mine useful knowledge from each full forest
using a convolutional neural network (CNN) (LeCun, Ben-
gio, and others, 1995). CNNs have shown to be effective on
handling dense multi-dimensional data, such as images and
videos. In order to allow our model to learn useful features
associated with the target mentions during encoding, we pa-
rameterize our convolutional kernels with the target mention
pairs. Similar parameterization of convolutional kernels was
recently studied on aspect-based sentiment analysis (Huang
and Carley, 2018) and demonstrated positive effects.

Results on two relation extraction benchmarks in biomed-
ical domain and one benchmark in general news domain
show that our method outperforms the best previous num-
bers and strong baselines that use 1-best dependency trees as
features, achieving the state-of-the-art or competitive perfor-
mances in the literature. To our knowledge, we are the first
to study full dependency forests and task-oriented parser ad-
justment for relation extraction, showing their advantages
over using 1-best discrete trees. Our code is now available
at https://github.com/freesunshine0316/lab-re-parser-joint.

2 Task definition

As a formal definition, the input to our task is a sentence
of N words s = w1, w2, . . . , wN . The input sentence s

is annotated with the boundary information (⇠1 : ⇠2 and
⇣1 : ⇣2) for the associated mention pair (⇠ and ⇣, we fo-
cus on the standard binary relation extraction scenario). The
output is a relation from a predefined relation set R =
(r1, . . . , rM , None), where “None” represents that no rela-
tion exists for the mention pair.

3 Baseline: using 1-best trees

Our baseline model adopts a bidirectional LSTM layer to en-
code an input sentence and a graph recurrent network (GRN)
(Song et al., 2018a; Beck, Haffari, and Cohn, 2018; Zhang,

Liu, and Song, 2018) to consume a 1-best dependency tree.
This model framework can extract features from both the
surface view and the syntactic view, which can provide com-
plementary information. Similar architectures (Zhang, Qi,
and Manning, 2018; Song et al., 2018b; Zhu et al., 2019)
have recently shown highly competitive performances for
relation extraction using 1-best dependency trees.

3.1 Bi-LSTM layer

Given an input sentence w1, w2, . . . , wN of N words, the
Bi-LSTM layer first represents these input words with their
embeddings e1, e2 . . . eN

1, which may contain word, char-
acter and part-of-speech information. A Bi-LSTM layer is
used to consume the embeddings:
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The state of each word wi is generated by concatenating the
states of both directions:

h
(0)
i = [
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i ;
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h

(0)
i ] (2)

3.2 GRN layer

As a next step, a 1-best dependency tree from a dependency
parser is organized as a directed graph DT = hV , Ei,
where V contains all input words w1, w2, . . . , wN and E =
{(wj , l, wi)}|wj2V,wi2V consists of all dependency edges.
Each triple (wj , l, wi) is a dependency arc, where wj modi-
fies wi with arc label l 2 L, and each word wi has a hidden
state initialized as the Bi-LSTM output h

(0)
i . The state rep-

resentation of the entire tree includes all word states:

H
(0) = {h

(0)
i }wi2V (3)

To capture non-local information over the tree, we adopt
a GRN that uses an iterative message passing framework to
perform information exchange between directly connected
words during each iteration. As a result, each word state is
updated by absorbing a larger context through the process,
and a sequence of states H

(0)
, H

(1)
, . . . is generated for the

entire tree. The final state H
(T ) = GRN(H(0)

, T ) is used
to represent the dependency tree.

Two steps are adopted by the message passing framework
within each iteration: message construction and message ap-
plying. Taking word wi and iteration t as the example, two
messages m

"
i and m

#
i are first constructed by summing up

the vectorized representations from the children and parent
of wi in the dependency tree, respectively, and a represen-
tation vector from a child/parent is the concatenation of its
hidden states with the corresponding arc-label embedding:

m
"
i =

X

(wj ,l,wi)2E(·,·,i)

[h(t�1)
j ; el]

m
#
i =

X

(wi,l,wk)2E(i,·,·)

[h(t�1)
k ; elrev ],

(4)

1For model variables, lowercase italic letters are for scalars and
indices, lowercase bold letters are for vectors, uppercase letters are
for matrices and uppercase bold letters are for higher order tensors.
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Figure 2: Model framework containing a forest generator and a forest encoder based on data dependent CNN.

where E(·,·,i) and E(i,·,·) represent the dependency arcs con-
nected with wi as the head and the modifier, respectively,
and ex represents the embedding of arc label x. lrev is the
reversed version of original label l (e.g. “amod-rev” is the
reversed version of “amod”).

Next, GRN adopts standard LSTM operations (Hochreiter
and Schmidhuber, 1997) to update its hidden state h

(t�1)
i

with the integrated message, taking a cell c
(t)
i to record

memory for h
(t)
i :

h
(t)
i , c

(t)
i = LSTM([m"

i ; m
#
i ], c

(t�1)
i ), (5)

where cell vector c
(0)
i is initialized as a vector of zeros.

The same process repeats for T iterations. Starting from
H

(0) of the Bi-LSTM layer, increasingly informed hidden
states are obtained with increasing iterations and H

(T ) is
used as the final representation for the whole graph.

3.3 Relation prediction

Taking the outputs H
(T ) of the GRN layer, we calculate the

representation vectors of the two target mentions ⇠ and ⇣ by
averaging among their tokens:

h⇠ = favg(H
(T )
⇠1:⇠2

); h⇣ = favg(H
(T )
⇣1:⇣2

) (6)

where ⇠1 : ⇠2 and ⇣1 : ⇣2 represent the spans of ⇠ and ⇣,
respectively, and favg is the averaging function. Finally, the
representations of both mentions are concatenated to be the
input of a logistic regression classifier:

y = softmax(W [h⇠; h⇣ ] + b), (7)

where W and b are model parameters.

4 Model: using full dependency forests

A full dependency forest is a fully connected graph, where
the vertices are input words and each edge represents a
dependency relation l (such as “subj” and “nmod”) be-
tween two words. An edge is also associated with a weight
that represents the conditional probability of the relation
p(wj , l|wi). Compared with 1-best trees, full dependency
forests encode all possible dependency relations with their
parser confidence scores. In order to efficiently encode them,
we represent each forest as a 3-dimensional tensor of proba-
bilities, with the first two dimensions corresponding to input
words and the remaining dimension corresponding to depen-
dency arcs, as shown in Figure 1(b).

Our model is similar to the baseline by stacking a Bi-
LSTM layer to process each input sentence with a network
based on convolutional operations to handle full dependency
forests. We use a first-order graph-based dependency parser
(Dozat and Manning, 2017) for generating full dependency
forests (shown in the left part of Figure 2). The Bi-LSTM
layer (shown in the right bottom corner of Figure 2) is iden-
tical with our baseline as described in Section 3.1.

4.1 Forest generation

As shown in Figure 2, the forest generator takes the neural
network architecture of the deep biaffine parser (Dozat and
Manning, 2017), where input words w1, . . . , wN are first
represented by their embeddings, before being processed by
a Bi-LSTM layer to obtain their contextual representations
r1, . . . , rN . As a next step, the representations for a word wi

being the head or the dependent of any dependency relation
are calculated by passing its contextual vector ri through the
corresponding multi-layer perceptrons (MLPs):

h
dep
i = MLPdep

l (ri); h
head
i = MLPhead

l (ri) (8)



Then the scores for all relation labels given a head word wj

and a dependent word wi are calculated as:

s
label
i,j = h

head
j Ulh

dep
i + (hhead

j � h
dep
i )>Vl + bl, (9)

and the scores for each unlabeled arc with any possible head
word given a dependent word wi are calculated as:

ĥ
dep
i = MLPdep

u (ri); ĥ
head
i = MLPhead

u (ri) (10)

s
head
i = Ĥ

head
Uaĥ

dep
i + Ĥ

head
va, (11)

where Ul, Vl, bl, Ua and va are all model parameters. Fi-
nally the conditional probability of each label l and each
head word wj given a dependent word wi is calculated as:

p(wj , l|wi) = p(l|wj , wi)⇥ p(wj |wi)

= softmax(slabel
i,j )(l) ⇥ softmax(shead

i )(j), (12)

where (x) in the subscript represents choosing the x-th item
from the corresponding vector.

Given the words of an input sentence, the probabilities
from Equation 12 can be organized into a rank-3 tensor. This
exactly fits our forest definition, so that no further modifica-
tion is required before the probabilities are processed by our
model. For the baseline, we apply a minimum spanning tree
algorithm over the outputs to generate the 1-best tree, which
is then encoded by a GRN described in Section 3.2.

4.2 Forest representation

The generated forests only contain the probabilities of word-
to-word relations without any lexical or relational knowl-
edge, thus it is necessary to integrate these probabilities with
word and relation embeddings. The middle part of Figure 2
visualizes our approach for the integration. In particular, for
each word pair relation (wj , l, wi), the word hidden states
(h(0)

j and h
(0)
i , produced by Equation 2) and relation embed-

ding (el 2 El) are first concatenated, and then the possible
relations are marginalized by a weighted sum:

hwj ,wi =
X

l2L

p(wj , l|wi)[ h
(0)
j ; h(0)

i ; el ] (13)

By using a weighted sum, relations with high probabilities
are highlighted, while other relations are also preserved. As
a next step, a linear layer is applied on the results of the
weighted sum to correlate the concatenated word states and
relation embedding:

h
0
wj ,wi

= Wfhwj ,wi + bf (14)

where Wf and bf are trainable parameters. The resulting
representations are organized following the word order of
the original sentence into a rank-3 tensor F 2 R|s|⇥|s|⇥d,
where |s| is the length of the sentence2 and d is the length of
the representation of a word pair (h0

wj ,wi
).

2With the special symbol ROOT considered as the first word.

4.3 Feature extraction with data-dependent CNN

As shown on the top right of Figure 2, each generated for-
est representation is a 3-dimensional tensor (F ), with each
lowest-rank vector corresponding to the relation and content
of a word pair. We choose to apply convolutional operations
to F , which have been shown effective in handling dense
multi-dimensional data, to extract useful features from this
structure.

For conventional CNNs, the convolution kernels Wc 2
Rnf⇥nw⇥nh⇥d are first randomly initialized, where nf , nw

and nh are the kernel count, kernel width and height, respec-
tively. As the next step, the kernels are applied to each con-
volutional region F̃(i,j) = F(i:i+nw;j:j+nh;·) with the coor-
dinate of its upper left element being (i, j, 0), and the output
of the convolution is:

C(·,i,j) = ReLU(WcF̃(i,j) + bc), (15)
where bc is trainable parameter representing kernel bias. On
top of the convolution outputs, max pooling is then applied
to reduce C into a vector ĉ 2 Rnf by keeping the maximal
value for each filter: ĉ = fmax(C), and ĉ will be part of the
input to our final relation predictor (Section 4.4).

One major drawback of conventional CNNs for relation
extraction is that their kernels only depend on the input sen-
tence, and thus the extracted features will be the same for
the same sentence. However, for relation extraction, one sen-
tence can contain more than two mentions and the relations
for different pairs of mentions in the same sentence can be
entirely different. In order for our feature extraction proce-
dure to be aware of the target mentions that are critical for
predicting the correct relation, we introduce data-dependent
CNN, where a kernel generation network is adopted to pro-
duce data-dependent convolution kernels (the orange 3D box
in Figure 2) by taking mention representations as inputs.

Data-dependent CNN For data-dependent CNN, the con-
volution kernels Wc are produced from our kernel genera-
tion network instead of randomly initialized. Taking the rep-
resentation vectors of both target mentions (h⇠ and h⇣ as
shown in Equation 6), the kernel generation network first
correlates them with a fully-connected layer:

h⇠,⇣ = ReLU(Wd[h⇠; h⇣ ] + bd), (16)
before a set of data-dependent convolution kernels being cal-
culated with another multi-dimensional layer:

Wc = ReLU(Wph⇠,⇣ + Bp), (17)
where Wd, bd, Wp, Bp are model parameters. Next, the gen-
erated kernels are applied on F to extract useful features,
which is identical with Equation 15, before max pooling be-
ing used to calculate ĉ.

4.4 Relation prediction

For relation prediction, the extracted features (ĉ) are com-
bined with the mention representations and feed into a lo-
gistic regression classifier:

h
0
⇠,⇣ = ReLU(Wg1 [h⇠; h⇣ ] + bg1)+

ReLU(Wg2 ĉ + bg2), (18)
y = softmax(Wrh

0
⇠,⇣ + br), (19)

where Wg1 , bg1 , Wg2 , bg2 , Wr and br are model parameters.



4.5 Comparison with the baseline

There are two differences between our model and baseline:
one is the syntactic features being used (trees vs forests), the
other is the network to encode such features (GRN vs DD-
CNN). Empirically, GRN and DDCNN give the best results
for their respective syntax representations, namely trees and
full forests. In our experiments, we introduce more baselines
to pinpoint the specific gains regarding the syntax and the
model structure, respectively.

5 Training

We train the baseline and our model using cross-entropy
loss. For each training instance that contains a sentence s

with two target mentions ⇠ and ⇣, the cross-entropy loss be-
tween the gold relation r and model distribution is:

l = � log p(r|s, ⇠, ⇣; ✓), (20)

where ✓ represents the model parameters. For models using
parser adjustment, ✓ includes the parameters of the forest
generator in addition to other model components.

6 Experiments

We conduct thorough comparisons between our model lever-
aging full dependency forests, 1-best trees and only surface
strings on the relation extraction task described in Section 2.

6.1 Data

Our main goal is to perform biomedical relation extrac-
tion, as the parsing errors are much severer in the biomedi-
cal domain than in the news domain. We choose two stan-
dard benchmarks in the biomedical domain, where pars-
ing performance drops dramatically due to domain variance
and unknown words. In addition, we conduct evaluation on
SemEval-2010 task 8 (Hendrickx et al., 2009), a benchmark
dataset for relation extraction in the news domain.

BioCreative VI CPR (Krallinger et al., 2017) This task
focuses on the relations between chemical compounds (such
as drugs) and proteins (such as genes). The corpus contains
1020, 612 and 800 extracted PubMed3 abstracts for training,
development and testing, respectively. All abstracts are man-
ually annotated with the mention boundaries and their rela-
tions. The data provides three types of NEs: “CHEMICAL”,
“GENE-Y” and “GENE-N”, and the relation set R contains
5 regular relations (“CPR:3”, “CPR:4”, “CPR:5”, “CPR:6”
and “CPR:9”) and the “None” relation. We segment each
abstract into sentences, keeping only the sentences that con-
tain at least a chemical mention and a protein mention. As
a result, we obtain 16,107 training, 10,030 development and
14,269 testing instances, in which around 23% have regu-
lar relations. By doing this, we effectively sacrifice cross-
sentence relations (which are rare) by treating their relation
as “None”. This is necessary for efficient generation of de-
pendency structures since directly parsing a short paragraph
is slow and introduces more errors. We report F1 scores of
the full test set for a fair comparison, using all gold regular
relations to calculate recalls.

3https://www.ncbi.nlm.nih.gov/pubmed/

Phenotype-Gene relation (PGR) (Sousa, Lamurias,

and Couto, 2019) This dataset concerns the relations be-
tween human phenotypes (such as diseases) with human
gene, where the relation set is a binary class on whether a
phenotype is related to a gene. It has 18,451 silver training
instances and 220 high-quality test instances, with each con-
taining mention boundary annotations. We separate the first
15% training instances as our development set.

SemEval-2010 Task 8 (Hendrickx et al., 2009) This
dataset is widely studied in recent work for general-domain
relation extraction. It contains 10,717 instances (8000 for
training) with 9 types of relations (such as “Cause-Effect”
and “Content-Container”) and a special “None” relation.

6.2 Models

To study the effectiveness of forests, we compare our
method with the following baselines:
• TREE-GRN: It corresponds to our baseline in Section 3,

which encodes 1-best trees with a GRN.
• TREE-DDCNN: It is similar to TREE-GRN except that

the 1-best trees are organized as sparse 3D tensors and are
encoded with the DDCNN model. This is for calibrating
the contribution of using forests.

• EQUAL-DDCNN: It represents the baseline without any
syntactic information. Taking the DDCNN in Section 4,
it consumes dense forests with equivalent edge weights
instead of parser generated probabilities.

• RANDOMFT-DDCNN: It adopts our model in Section 4
with parser adjustment based on the relation extraction
loss, except that the parser is initialized randomly.

• FOREST-CNN: It takes the model in Section 4 while us-
ing a standard CNN to consume forests.

We further compare two versions of our model with or with-
out finetuning:
• FOREST-DDCNN: It represents our model in Section 4

without parser adjustment for relation extraction training.
• FORESTFT-DDCNN: It shows our model in Section 4

with parser adjustment. This model takes the same num-
ber of parameters as RANDOMFT-DDCNN.

6.3 Settings and Hyper-parameters

We pretrain our deep biaffine parser (Dozat and Manning,
2017) with default settings on the Penn Treebank (PTB)
(Marcus and Marcinkiewicz, 1993) converted to Stanford
Dependency v3.5 to obtain 1-best trees and full dependency
forests. Using standard PTB data split (section 02–21 for
training, 22 for development and 23 for testing), the parser
gives UAS and LAS scores of 95.7 and 94.6, respectively.

For biomedical experiments, word embeddings of our
baseline and model are initialized with the 200-dimensional
BioASQ vectors4 pretrained on 10M abstracts of biomedical
articles, while we use 300-dimensional Glove embeddings5

pretrained on 840B data for the news-domain experiments.
4http://bioasq.lip6.fr/tools/BioASQword2vec/
5https://nlp.stanford.edu/projects/glove/



Syntax type Model test F1

None

GRU+Attn (Liu et al., 2017)† 49.5
Bran (Verga et al., 2018)† 50.8

EQUAL-DDCNN 50.4
RANDOMFT-DDCNN 45.4

Tree TREE-GRN 51.4
TREE-DDCNN 50.3

Forest

Forest-GRN (Song et al., 2019)† 53.4
FOREST-CNN 50.5

FOREST-DDCNN 53.1
FORESTFT-DDCNN 55.7

Table 1: Main results on BioCreative VI CPR. † denotes pre-
vious numbers. We use the same notation for later results.

These embeddings are fixed during relation extraction train-
ing. The dimension of hidden states in Bi-LSTM is set to
200, and the number of filters for data-dependent CNN is
also set to 200. We use Adam (Kingma and Ba, 2014), with
a learning rate of 0.001, as the optimizer. For baseline, GRN
step T is set to 2. The values of these hyperparameters are
chosen based on either the reports of existing work or our
development experiments.

6.4 Main results

Table 1 compares our models with our baselines and previ-
ously reported state-of-the-art numbers, where systems us-
ing the same type of syntax forms are grouped together.
Among previous work, GRU+Attn (Liu et al., 2017) stacks
a self-attention layer on top of GRU and embedding lay-
ers; Bran (Verga et al., 2018) adopts a biaffine self-attention
model to simultaneously extract the relations of all mention
pairs. Both methods use only textual knowledge. As a very
recent work, Forest-GRN (Song et al., 2019) first generates
dependency forests as discrete graph structures by pruning
out dependency arcs of low parser confidences, before con-
suming these forests with a GRN network.

With 1-best dependency trees, the TREE-GRN baseline
gives a slightly better performance over the previous best
system with only textual features (Bran), showing the use-
fulness of dependency information. Using full dependency
forests, FOREST-DDCNN gives a large improvement of 1.7
absolute F1 points over TREE-GRN. With parser adjust-
ment, FORESTFT-DDCNN demonstrates a further perfor-
mance boost of 2.6 absolute points over FOREST-DDCNN,
demonstrating the usefulness of task-oriented parser finetun-
ing. Also, FORESTFT-DDCNN outperforms Forest-GRN,
the previous state-of-the-art model. FOREST-CNN is much
worse than FOREST-DDCNN, indicating the importance of
letting CNN be aware of the target mentions. In addition to
the types of syntax being used (tree vs forest), the encoders
are also different (GRN vs DDCNN). We make additional
comparison between other baselines and our models to study
each factor and lead to the following conclusions:

Effectiveness of full dependency forests TREE-
DDCNN shows a lower F1 score than TREE-GRN, while
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Figure 3: Test F1 scores of TREE-GRN and FORESTFT-
DDCNN regarding different group of instances divided by
sentence length.

FOREST-DDCNN is much better than TREE-GRN. Both
results indicate that the gain of FOREST-DDCNN comes
from using forest, not from adopting a different encoder. The
lower performance of TREE-DDCNN than TREE-GRN is
likely because CNNs are good at handling dense vectors,
while trees are highly sparse.

Effectiveness of parser pretraining Being in the
same group, neither EQUAL-DDCNN nor RANDOMFT-
DDCNN uses a treebank to pretrain their parser. Instead,
EQUAL-DDCNN ignores parser outputs and takes 3D
forests of identical probabilities, which is equivalent to
not using any syntactic information. On the other hand,
RANDOMFT-DDCNN relies only on the relation extrac-
tion loss to tune its randomly initialized parser parameters.
EQUAL-DDCNN shows a much better performance than
RANDOMFT-DDCNN, and RANDOMFT-DDCNN suffers
from large training variance. The reason can be that re-
lation extraction loss is not sufficient for adjusting the
parser parameters well. On the other hand, both FOREST-
DDCNN and FORESTFT-DDCNN in the last group show
very strong results. In particular, the only difference be-
tween RANDOMFT-DDCNN and FORESTFT-DDCNN is
on whether loading the graph structure with syntax. Based
on all the evidence, we can draw the conclusion that syntax
is useful for relation extraction.

Effectiveness of parser finetuning Again, by con-
trasting the models in the first group (EQUAL-DDCNN vs
RANDOMFT-DDCNN) and the models in the last group
(FOREST-DDCNN vs FORESTFT-DDCNN), we can con-
clude that parser finetuning based on relation extraction loss
is helpful when the parser is already at a good initial point
by treebank-based pretraining.

6.5 Accuracy against sentence lengths

Figure 3 shows the test accuracies regarding different ranges
of input lengths. Overall, FORESTFT-DDCNN outperforms
TREE-GRN for each group of instances, showing the effec-
tiveness of leveraging the full dependency forests with our
model based on data-dependent CNN. The performance gap
is enlarged when the instance length increases. Intuitively,
longer instances are more challenging because of more pars-



Tree UAS/LAS Model test F1

1K 88.07/85.48 TREE-GRN 47.6
FORESTFT-DDCNN 51.5

5K 92.63/90.77 TREE-GRN 50.3
FORESTFT-DDCNN 53.7

Table 2: Test results when less trees are available. The full
treebank has 39.8K trees for training.

Model test F1

BO-LSTM (Lamurias et al., 2019)† 52.3
BioBERT (Lee et al., 2019)† 67.2

TREE-GRN 78.9

FORESTFT-DDCNN 89.3

Table 3: Relation classification results on PGR.

ing errors and sophisticated tree structures, so this compar-
ison demonstrates the merits of our approach for handling
the propagation of parsing errors and representing complex
syntactic structures.

6.6 Robustness on parsing accuracy

We have shown in Section 6.4 that a dependency parser
trained with a domain-general treebank can produce high-
quality forests in a target domain, providing more effective
information over 1-best trees for relation extraction. This is
based on the assumption that the domain-general treebank is
in a descent scale so that the parsing accuracy in the target
domain is not very low. As a result, it would be important
to evaluate the performances of both tree-based and forest-
based models when the domain-general treebank only con-
tains a limited number of trees.

Table 2 shows the performance changes of both TREE-
GRN and FORESTFT-DDCNN when only 1K or 5K tree-
bank instances are available for parser pretraining. Taking
1K and 5K gold trees, the performance decrease in terms
of LAS are 9.1 and 3.8 points compared with the num-
ber with full treebank. Using 1K trees, the performances
of both models drop significantly due to the greater pars-
ing noise, yet ForestFT-DDCNN still manages to achieve a
slightly better number than TREE-GRN (51.4 test F1) taking
40 times of trees (full treebank). This shows the superiority
of our model, especially given the situation that 1K trees
are available for many languages. Using 5K trees, ForestFT-
DDCNN manages to be 3.4-point better than TREE-GRN
with the same number of trees. Overall, these results indi-
cate that ForestFT-DDCNN is more robust to parsing noises
than TREE-GRN.

6.7 Results on PGR

Table 3 shows the comparison with previous work on the
PGR testset, where our models are significantly better than
the existing models. This is likely because the previous mod-

Model test F1

C-GCN (Zhang, Qi, and Manning, 2018)† 84.8
C-AGGCN (Guo, Zhang, and Lu, 2019)† 85.7

TREE-GRN 84.6

FORESTFT-DDCNN 85.5

Table 4: Results on SemEval-2010 task 8.

els do not utilize all the information from inputs: BO-LSTM
takes only the words (without arc labels) along the shortest
dependency path between the target mentions; the pretrained
parameters of BioBERT are kept static during the training of
relation extraction.

Using 1-best dependency trees, TREE-GRN is better than
BioBERT by a large margin (11.7 points), confirming the
usefulness of syntactic structures. Utilizing full dependency
forests, FORESTFT-DDCNN gives another boost of 10.0+
absolute points from TREE-GRN, showing the usefulness of
full dependency forests for medical relation extraction.

6.8 Results on SemEval-2010 task 8

Our model is general and can be used on relation extrac-
tion in the news domain. As shown in Table 4, we conduct a
preliminary study on SemEval-2010 task8 (Hendrickx et al.,
2009), a benchmark for relation extraction in news domain.
While the DEPTREE baseline achieves similar performance
as C-GCN, it is roughly 1 point worse than C-AGGCN, and
one potential reason is that C-AGGCN takes more parame-
ters. Using full forests and parser adjustment, FORESTFT-
DDCNN outperforms DEPTREE by almost 1 point and is
comparable with C-AGGCN. The gain by using full forest is
less than those in biomedical domain benchmarks, and the
reason can be that the parsing performance for newswire is
much more accurate than the biomedical domain.

7 Related work

The effectiveness of dependency forests are rarely studied in
the NLP community. Tu et al. (2010) leveraged dependency
forests for statistic machine translation, and very recently
Song et al. (2019) investigated dependency forests for med-
ical relation extraction. These previous efforts use forests as
sparse and discrete structures by pruning out edges of low
parser confidence during preprocessing, while we present
full dependency forests as a continuous 3D tensor. With full
dependency forests, no parsing information is lost, and the
parser can be easily adjusted with the loss from the end task.
This superiority was demonstrated by comparing with Song
et al. (2019) in our experiments. To our knowledge, we are
the first to investigate full dependency forests.

8 Conclusion

Forests are complex structures that are more difficult to gen-
erate and consume than trees. Because of this reason, previ-
ous research on relation extraction tend to use 1-best trees
that are generated during preprocessing, even if this could



cause severe error propagation. We proposed an efficient and
effective relation extraction model that leverage full depen-
dency forests, each of which encodes all valid dependency
trees into a dense and continuous 3D space. This method al-
lows us to merge a parser into a relation extraction model so
that the parser can be jointly updated based on end-task loss.
Extensive experiments show the superiority of forests for
RE, which significantly outperform all carefully designed
baselines based on 1-best trees or surface strings.

We leave studying the effectiveness of full dependency
forests for relation extraction in other domains (Augenstein
et al., 2017) as future work.
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